

Companion Power Selection Guide: Blackfin and SHARC Processors

ADI power management products provide optimized power for Blackfin[®] and SHARC[®] products—whether it's a single processor or multiple processors, in handheld or high power applications, ADI has a solution to meet your needs.

How To Use This Guide

Blackfin Processors

ain

Dom

VDD

Domains

Other

Domain

VDD_{INT}

Othe

ADSP-BF51x

ADSP-BF522/ADSP-BF524/ADSP-BF526

ADSP-BF523/ADSP-BF525/ADSP-BF527

ADSP-BF531/ADSP-BF532/ADSP-BF533

ADSP-BF533

ADSP-BF534/ADSP-BF536

ADSP-BF534/ADSP-BF536/ADSP-BF537

ADSP-BF538/ADSP-BF539

ADSP-BF54x

ADSP-BF54x

ADSP-BF561

VDD_{EXT}

VDD_{MEM}

VDD

VDD_{USB}

VDD_{OTP}

ADSP-21261/ADSP-21262/ADSP-21266

ADSP-21362/ADSP-21363/ADSP-21364/

ADSP-21365/ADSP-21366

ADSP-21367/ADSP-21368/ADSP-21369

ADSP-21371/ADSP-21375

VDD_{EXT}

VDD_PLL/ANALOG

Determine the peak current requirement for each rail of your processor by referring to the relevant data sheets and engineer-to-engineer notes. Then, use this companion guide to select a power solution that offers the required V_{out} for that rail.

The ADIsimPower[™] design tool offers a complete set of features to create a complete BOM for all of these solutions. Visit *analog.com/ADIsimPower*.

Speed (MHz)

All

All

All

400

500, 533, 600

300, 400

500, 533, 600

400, 533

400

533.600

All

Min Voltage (V)

1.7

1.7

2.5

3

2.25

Speed (MHz)

150

200

200

333

266

333

350

400

266

Min Voltage (V)

1.083

1.083

0.95

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.8 Nominal Voltages (V)

1.8, 2.5, 3.3

1.8, 2.5, 3.3

2.6

3.3

2.5

Min Voltage (V)

1.14

1.14

0.95

1.14

1.14

1.14

1.14

1.14

1.14

Nominal Values (V)

3.3

1.2

Max Voltage (V)

1.47

1.47

1.26

1.32

1.45

1.32

1.43

1.375

1.43

1.43 1.42

Max Voltage (V)

3.6

3.6

2.7

3.6

2.75

<500

500

<800

<800

700

900

1050

1100

600

Max Current (mA)

10

1200

٠

Max Voltage (V) Typical IDD_{INT} (mA)

1.26

1.26

1.05

1.26

1.26

1.35

1.365

1.35

1.26

N

Ma

	Linear Regulators				Switching Regulators								SC ¹								
	Part Number	ADP121	ADP170	ADP220	ADP1706	ADP1707	ADP1715	ADP1720	ADP1740 ADP1741	ADP1752 ADP1753	ADP1754 ADP1755	ADP2102	ADP2105	ADP2106	ADP2107	ADP2108	ADP2114	ADP2504	ADP5020	ADP1829	ADP1864
	V _{IN} (V)	2.5-5.5	1.6-3.6	2.5-5.5	2.5-5.5	2.5-5.5	2.5-5.5	4.0–28	1.6-3.6	1.6-3.6	1.6-3.6	2.7-5.5	2.7-5.5	2.7-5.5	2.7-5.5	2.3-5.5	2.7-5.5	2.3-5.5	2.4-5.5	3.0–18	3.15-14
	Vour (V)	1.2–3.3	0.8-3.0	0.8–2.8	0.75-3.3, soft start	0.75–3.3, with tracking	0.8-5.0	1.225-5.0	0.75-3.0	0.75-2.5	0.75-2.5	0.8-1.875	1.2–3.3	1.2–3.3	1.2–3.3	1–3.3	0.8–3.3	2.8-5.0	N/A	N/A	N/A
	l _{our} Max (A)	150 mA	300 mA	2 outputs: 200 mA, 200 mA	1	۰	500 mA	50 mA	7	800 mA	1.2	600 mA	1	1.5	2	600 mA	2/2, 1/3, or 4 single	1	3 outputs: 250 mA, 600 mA, 150 mA	20	Q
Max IDD _{INT} (r	mA)							_					_	_				_			
225			•				٠												•		
250 500			•				•												•		
350					•	•	•			•		•					•		•		
900					•	•					•										
400							•			•		•							•		
900					•	•					•						•				
850 750					•	•				•	•						•				
1350						-			•								•				
1600									•								•				
lax Current	(mA)																				
NA NA		•			•	•	•						•	•	•	•	•	•	•		
NA		•	•	•	•	•	•	•	•				•	•	•	•	•	•	•		
30		•			•	•	•	•					•	•	•	•	•	•	•		
25		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		
Max IDD _{IN}	т (mA)			_	_																
	1260								•					•	٠		•				
1260	1260 1150								•					•	•		•				
	1150								•		•			•	•		•				
	1600								•					-	•		•				
3025																	•			•	٠
	1900								•						•		•				
3100	3100																•			•	٠

.

٠

٠

¹SC = switching controllers

g controllers ²Refer to the relevant data sheet and engineer-to-engineer note to determine the exact "other domain" requirements of each individual processor.

Many applications power more than one device or domain using a single regulator. Compute and add the maximum current draw for each device and domain in a particular application before choosing a regulator.

The regulators marked in this guide support the current draw at the maximum specified frequency, voltage, and industrial temperature. Regulators not marked as compatible with a particular processor may still be appropriate depending on the frequency, voltage, temperature, and application code used.

• •

٠

.

.

.

analog.com/power

• • •

SENSE1

SENSE3

SENSE2 RESET

ADP5020 1.1V-1.8V (250mA) VDDINT /DD2 VOUT: V_{IN}: 2.4V-5.5V > 2.5V-3.7V (600mA) VDDEXT VDD1 VOUT VDDA 1.8V-3.3V (150mA) VOUT3 VDD3 SCL SCL EN ON/OFF P SDA SDA SWITCH XSHTDWN RESET VDDIO GND ÷ 1V-3V (150mA) ADP121 VDD_{RTC} 3.3V Ŧ

*Numerous variables affect the power requirements of an embedded system. Ambient temperature, core and system frequency, supply voltages, pin capacitances, power modes, application code, and peripheral utilization all contribute to the average power requirements; therefore, these are just two suggested solutions.

Analog Devices has an extensive portfolio of supervisory products, offering industryleading threshold accuracy, suited to monitoring the multiple supplies commonly needed to power DSP and FPGA applications. There are several device families offering a combination of pretrimmed threshold and user adjustable inputs, with some including a watchdog timer function.

Supervisory Devices Power Companion

Number of Monitored Rails	ADI Part Number	Pretrimmed Threshold Accuracy ¹	Adjustable Threshold Accuracy ¹				
	ADM6319	±2.5%	—				
Single ²	ADM6384	±2.5%	—				
	ADM803	±2.7%	—				
Dual	ADM13305	±2.7%	±0.80%				
Triple	ADM13307	±2.7%	±0.80%				
Quad	ADM1184	—	±0.80%				
Quad	ADM6710	±2.8%	±1.50%				

¹Over temperature.

²This is just a sample selection of single-channel supervisory devices that are available. For further information visit analog.com/supervisory.

Analog Devices, Inc. Worldwide Headquarters

Analog Devices, Inc. One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 U.S.A. Tel: 781.329.4700 (800.262.5643, U.S.A. only) Fax: 781.461.3113

Analog Devices, Inc. Europe Headquarters Analog Devices, Inc. Wilhelm-Wagenfeld-Str. 6 80807 Munich Germany Tel: 49.89.76903.0 Fax: 49.89.76903.157

Analog Devices, Inc. Japan Headquarters Analog Devices, KK New Pier Takeshiba South Tower Building 1-16-1 Kaigan, Minato-ku, Tokyo, 105-6891 Japan Tel: 813.5402.8200 Fax: 813.5402.1064

Analog Devices, Inc. Southeast Asia Headquarters Analog Devices 22/F One Corporate Avenue 222 Hu Bin Road Shanghai, 200021 China Tel: 86.21.2320.8000 Fax: 86.21.2320.8222

2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

G07426-0-6/09(A)