

AD9371 INTEGRATED WIDEBAND RF TRANSCEIVER

Simplify Your System Design and Standardize Your Radio Platform

High Performance and Integration

- Replaces as many as 20 high performance, discrete radio components chip solution providing simple, reliable connections.
- Direct conversion, high linearity, and self calibration maintain best performance level varying environmental and operating conditions.
- Large-scale integration and zero IF allows for wide frequency range and eliminates interconnection losses while reducing broadband matching concerns.

Versatility

- Offers a common platform for a wide range of applications, reducing development time and inventory costs.
- Operates from 300 MHz to 6 GHz.
- Supports receiver bandwidths up to 100 MHz.
- Supports operating transmit bandwidths up to 100 MHz and observation receiver and transmit synthesis bandwidths up to 250 MHz for digital correction algorithms.

Size, Weight, and Power (SWaP)

- Reduced component count enables radios to be installed on buildings, light poles, office walls, and more.
- A power consumption level at less than 5 W under normal operating conditions reduces the need for cooling, increases reliability, and reduces operating costs.
- JESD204B data interface minimizes input/output lines, making remote location of the radio more feasible.

Ease of Use

- > ADI radio technology design expertise reduces development costs and time to market (TTM).
- Complete API (application program interface), software user guides, and a standard serial peripheral interface (SPI) simplify development.
- On-chip tracking calibration maintains performance with little user control required.

Applications

a/4G managedl, microcell, and ocell basic rations

- FDD active antenna systems
- Microwave non-line-of-sight (NLOS) backhaul systems
- Electronic test and measurement
- Drones/UAVs
- Satellite communications
- Electronic warfare
- Military communications

🖸 🕥 💼 🚹 Visit analog.com/AD9371

AD9371 Functionality

- Dual differential transmitters (Tx)
- Dual differential receivers (Rx)
- Observation receiver (ORx) with two inputs
- Sniffer receiver (SnRx) with three inputs
- Tunable range: 300 MHz to 6 GHz
- Transmitter synthesis bandwidth: up to 250 MHz
- Receiver bandwidth: 7.5 MHz to 100 MHz
- Supports frequency division duplex (FDD) and time division duplex (TDD) operation
- Fully integrated independent fractional-N radio frequency (RF) synthesizers for Tx, Rx, ORx, and clock generation
- JESD204B digital interface

RadioVerse Technology and Design Ecosystem

ADI recognizes the challenges associated with RF designation, and what it takes to bring a high performance radio solver to mark equickly.

The RadioVerse[™] technology and design econotem to be our curboners through the entire radio design process—from idea, to production—as fast as possible.

In addition to ADI's market-leading integrated transceiver technic a RadioVerse offers a choice of evaluation options, software that guide complete API, a standard serial peripheral interface (SPI), training, an active technical support community, and a growing ecosystem of industry-leading ODM partners.

Evaluation Options

There are several evaluation options available for the AD9371 integrated RF transceiver. Both the full product evaluation system and the prototyping platform are available in narrow tuning (ADRV9371-N-EBZ) or wide tuning (ADRV9371-W-EBZ) range options.

.1	functional	ck	diagram.
/			

	FMC-Compatible Mezzanine Cards	FMC Motherboards	FPGA Der	Control and Data Capture	
Evaluation System	ADRV9371-N-EBZADRV9371-W-EBZ	► Xilinx [®] ZC706	 Provided binary, very with Xilinx JESD - B IP Binary used to characterize IC performance 	 Optimizing system-agnostic API source in ANSI C Command/control and data capture via Windows GUI 	
Prototyping Platform	 ADRV9371-N-EBZ ADRV9371-W-EBZ 	 Variety of Xilinx development boards 	 Publicly available HDL on GitHub, verified with Xilinx and Altera JESD204B cores 	 Open-source GUI, Windows,[®] Linux,[®] and OS-X Open-source Linux IIO device driver Streams data to GNU radio, MATLAB, and Simulink 	
Software Simulation Tools	Filter Designer Determine frequency settings, setup ADC coefficients and sample rates, and design filters with minimal trial and error. Easily create custom filters, examine filter performance, and quickly generate coefficient for implementation, input into Simulink model or hardware.				

Analog Devices, Inc. Worldwide Headquarters

Analog Devices, Inc. One Technology Way P.O. Box 9106 U.S.A. Tel: 781.329.4700 (800.262.5643, U.S.A. only) Fax: 781.461.3113

Analog Devices, Inc. Europe Headquarters

Analog Devices, Inc. Otl-Aicher-Str. 60-64 80807 München Germany Tel: 49.89.76903.0 Fax: 49.89.76903.157

Analog Devices, Inc. Japan Headquarters

Analog Devices, KK New Pier Takeshiba South Tower Building 1-16-1 Kaigan, Minato-ku, Tokyo, 105-6891 Japan Tel: 813.5402.8200 Fax: 813.5402.1064

Analog Devices, Inc. Asia Pacific Headquarters

RX1+ 🔿

RX1-C

RX2-

R_EXTLO-

TX1+ C

TX1

TX2+

TX2

TX_EXTLO+

TX_EXTLO-

ORX1+

ORX1-

ORX2+

ORX2-

SNRXA

SNRXC+

SNRXC

SNRXB+

BX2+

R_{X1}

Rx

T_{X1}

T_{X2}

External

LO Generator

RF Synthesizer

> Observation R_X

> > Sniffer R_x

LPF

LPF

LPF

 \approx

LPF

 \approx

ADC

ADC

RF Synthesizer

DAC

DAC

RF Synthesizer

LPF ,

ADC

ADC

 $1 \approx$

LPF

 \otimes

 ∞

LO Generator

 \bigotimes

 \bigotimes

LO Generator

Analog Devices 5F, Sandhill Plaza 2290 Zuchongzhi Road Zhangjiang Hi-Tech Park Pudong New District Shanghai, China 201203 Tel: 86.21.2320.8000 Fax: 86.21.2320.8222 ©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Ahead of What's Possible is a trademark of Analog Devices. PH14536-0-6/16(A)

analog.com/AD9371

Decimation, pFIR, DC Offset QEC, Tuning, RSSI, Overload

Microcontroller

SPI Port

pFIR, DC Offset QEC,

Tuning, Interpolation

> GPIO ADXADC AUXDAC

Clock Generator

Decimation, pFIR, AGC, DC Offset,

QEC, Tuning, RSSI.

Overload

JESD204-B

ጏᡖ

JESD204-B

ł

CTRL

뷛土

5£5

JESD204-B

